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Abstract

We propose a hierarchical Bayesian model for con-
ducting inference on the location of multiple seis-
mic events (earthquakes) given data on the arrival
of various seismic phases to sensor locations. The
model explicitly accounts for the uncertainty asso-
ciated with a theoretical seismic-wave travel-time
model used along with the uncertainty of the ar-
rival data. Posterior inferences is carried out using
Markov chain Monte Carlo (MCMC).

1. Introduction

Locating a seismic event (earthquake) is almost
without exception the first step in seismic process-
ing. Determination of event location is, for example
a prerequisite to the calculation of event magnitude.
And in the case of damaging earthquakes, event lo-
cation is crucial for directing emergency responders.

The location parameters of a single seismic event
consists of the hypocenter (latitude, longitude, and
depth) and the origin time. Our main goal will be
to conduct inference on those parameters given (1)
the observed arrival-time of seismic phases, (2) a
theoretical travel-time model, and (3) some prior
knowledge (e.g., on location, travel-time model un-
certainty, etc.). In particular, we are interested in
drawing inference about events that are not well de-
fined as a result of any combination of: small amount
of (noise-corrupted) data, little prior information,
and/or an unestablished regional travel-time model.

The arrival-time data consists of observed arrival
times of various seismic waves from multiple events
to multiple stations. Each seismic event generates
different types of seismic waves, phases, that propa-
gate from the event origin along different paths. The
arrival of these phases is then recorded by a seis-
mometer at various seismic stations. The “picking”
of the arrival-times, and which phase they belong to,
is a mix of art and science. As such, its error process
is not well defined or understood; some phases are
easier to pick than others, some people are better
(more consistent) at picking than others, etc. Seis-
mic bulletins (databases) are universally contami-
nated with incorrect phase assignments and large
arrival-time outliers. Hence, an important ingredi-

ent to an accurate seismic locator is a good charac-
terization and modeling of the this error process.

The observed arrival-times are linked to the seis-
mic events using a seismic-wave travel-time model.
A (regional) travel-time model for a given wave-
phase is typically a function of the angular distance
between the event and the station with a correction
for the vertical depth of the event and the elevation
of the station. However, the travel-time model is
just an approximation to the true travel-time. Sys-
tematic errors in the travel-time model can therefore
greatly affect the accuracy of a seismic locator.

In addition to the observed arrival-time data and
the theoretical travel-time model, we have (poten-
tially) available some prior knowledge about the
quality of the data, the model, and the location of
some of the events. For example, we might have
prior knowledge about the vertical depth of some
of the events, while for other events we might have
prior knowledge of their lat-long position. Events
for which we have strong prior knowledge might not
be of particular interest themselves, however, they
could be very valuable in “constraining” the analy-
sis of events that are not as well defined a priori.

The most commonly used event location algo-
rithms process one event at a time. These methods
minimize a loss function to determine the optimal
location. The loss function is based on the differ-
ence between observed and predicted arrival times of
various seismic phases at established sensors. These
methods are adequate for determining initial loca-
tion estimates, but location errors on the order of
tens of kilometers are common (Bondár et al., 2004).

Simultaneous determination of many event loca-
tions (multiple-event location) can help to iden-
tify and correct travel-time prediction and seis-
mic analysis errors. Douglas (1967) introduced the
multiple-event location method, and subsequent ef-
forts (Dewey, 1972; Jordan & Sverdrup, 1981; Pavlis
& Booker, 1983; Rodi & Toksöz, 2000) are varia-
tions on the original theme. Multiple event methods
typically solve for each event location, as well as a
scalar travel-time correction for each station/phase.
The problem is typically formulated as a linear ap-
proximation, which allows the application of matrix
inversion methods as solvers. The full set of equa-
tions is typically singular and constraints are needed
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to invert the matrix. Fixing the location of one event
or assuming a zero mean population of station/phase
correction are the most common constraints in prac-
tice. More recently, Waldhauser & Ellsworth (2000)
used a travel-time residual differencing (i.e. dou-
ble difference) procedure to implicitly account for
station/phase corrections. Most importantly, the
double-difference method implements an ad hoc spa-
tial correlation function that can account for changes
in the station/phase correction as a function of event
position. While each of the current multiple-event
methods has unique merits, the full knowledge of the
multiple-event problem is not currently utilized. As
a result of underutilized prior knowledge, extensive
data culling is a prerequisite to maintain inversion
stability.

We propose a hierarchical Bayesian model that ex-
plicitly models the error-processes associated with
the arrival-data and the travel-time model. The
Bayesian approach also provides a natural frame-
work to take advantage of prior information. As our
approach is probabilistic, it yields posterior distribu-
tions of event locations, and other model parameters
(travel-time corrections, etc.).

1.1 Notation

In what follows, we assume I number of events with
data observed at J number of stations, where the
type of arrivals are restricted to the phase-set W =
{w1, . . . , wN} (e.g., W = {Pn,Pg,Lg}).

The event location parameters are:

xi ≡ (xi, yi, zi) = the hypocenter (location)
of the i-th event.

oi ≡ the origin time of the i-th event.

The station data is given by:

sj ≡ the location of the j-th station.
nij ≡ the number of recorded arrivals from

the i-th event to the j-th station.
aijk ≡ the k-th observed arrival-time from the

i-th event to the j-th station.
wijk ≡ the phase-label assigned to the aijk

arrival-time, wijk ∈ W.

The phase labels {wijk} are treated as data with po-
tential errors. That is, it might be the case that the
arrival-time aijk is not the arrival of the wijk phase
— it might even not correspond to the arrival of any
of the N phases in W. To account for both possible
mislabeling of phases and potential “outliers”, let

Wijk ≡ the true phase-label associated with the
arrival-time aijk, Wijk ∈ W+ ≡ W ∪
{0}.

Note we have introduced an additional “phase-
label”, 0, such that if Wijk = 0, then aijk is not
assumed to be an arrival of any of the phases in W.

To conduct inference on the event parameters
given the station data, a theoretical seismic phases
travel-time model is used (e.g., the IASP91 model of
Kennett & Engdahl (1991)). Denote by

Fw(x, s) ≡ the model-predicted travel-time of
phase w from event location x to
station location s, and let,

Fw
ij ≡ Fw(xi, sj).

However, the model-predicted travel-time is only an
approximation of the true travel-time of each phase,
we therefore explicitly define,

Tw(x, s) ≡ the true travel-time of phase w from
event location x to station location s,
and let,

Tw
ij ≡ Tw(xi, sj).

One can think of the true travel-time as related to
the model-predicted travel-time via

Tw(x, s) = Fw(x, s) + (model error), (1)

where the size of the model-error component de-
pends on the accuracy of the travel-time model.
Given the true travel-time and the origin time, we
denote the arrival-time of phase w from the i-th
event to the j-th station by

Aw
ij ≡ oi + Tw

ij .

When Wijk 6= 0 (i.e., aijk is a “good” arrival ob-
servation), let

Tijk ≡ T
Wijk

ij and Aijk ≡ oi + Tijk,

be the true (the expected) travel-time and arrival-
time, respectively, associated with the observed
arrival-time aijk. The observed arrival-times {aijk}
are thought to be related to the expected arrival-
times {Aijk} via

aijk = Aijk + (measurement error), (2)

where the measurement error captures, among other
things, the “picking” error associated with the
{aijk}.

We will refer to a subset of parameters by simply
dropping one or more sub/super scripts. For exam-
ple,

x ≡ {xi}, a ≡ {aijk}, and T ≡ {Tw
ij }.
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2. Hierarchical Bayesian Statistical
Modeling Approach

While defining our notation in the previous section,
we introduced informally the concept of measure-
ment and model errors; see (2) and (1). We shall now
better formulate these concepts (along with phase-
assignment errors) and formally take advantage of
any prior knowledge, particularly about the seismic
location parameters.

The approach we take is to model the seismic data
via a three-stage hierarchical Bayesian model:

Data-Model: A conditional distribution of a and
w given A and W:

p(a,w |A,W,σ) = p(a,w |o,T,W,σ) (3)

where σ is a vector of parameters (if any) asso-
ciated with the data model.

Process-Model: A conditional distribution of T
and W given the model-predicted travel-time
table F:

p(T,W |F, τ ) = p(T,W |x, τ ) (4)

where τ is a vector of possible additional pa-
rameters. Recall that F = {Fw(xi, sj)}.

Parameter-Model: A prior distribution of x, o,
σ, and τ :

p(x,o,σ, τ ) = p(x,o)p(σ)p(τ ). (5)

The second expression assumes independence
between {x,o}, σ, and τ .

The joint posterior distribution of all the param-
eters involved is given by

p(x,o,T,W,σ, τ |a,w) ∝ p(a,w |o,T,W,σ)
× p(T,W |x, τ )p(x,o)p(σ)p(τ ).

(6)

Hence, in addition to provide posterior inference
about the event-origin parameters, x and o, the pos-
terior distribution (6) also carries information about,
for example, the actual (not model predicted) travel-
times, T.

We now discuss the three modeling stages in more
details.

2.1 The Data Model

The data-model describes (probabilistically) the dif-
ference between the observed and the expected

arrival-times and phase assignments; see (3). This
model can alternatively be written as,

p(a,w |o,T,W,σ)
= p(w |a,o,T,W,σw)p(a |o,T,W,σa),

(7)

where σ = {σa,σw}. Hence, a model can be spec-
ified for the phase assignments that is conditional
on the observed arrival-times (in addition to the
expected arrival-times and phase assignments) and
then a separate model can be specified for the ob-
served arrival-times. This partly reflects how the
arrival-times and the phases are picked in practice,
where an arrival-time can be picked without know-
ing the phase, but the picked arrival-time can be
valuable in deciding on the phase label.

The Arrival-Time Data Model

Consider first the case when all the arrival-time ob-
servations are assumed to be good phase-picks; that
is, Wijk 6= 0. We assume that,

aijk −Aijk ∼ Gau(bijWijk
, VijWijk

),

where Gau(bijWijk
, VijWijk

) denotes a Gaussian dis-
tribution with mean bijWijk

and variance VijWijk
.

We currently take the “bias” parameters {bijw :
w ∈ W} to be

bijw = bj ,

to capture small-scale station-specific variation. The
{bj} are assumed to be independently Gaussian dis-
tributed a priori, with an inverse-gamma distributed
variance; that is,

bj ∼ Gau(0, Vb), with V −1
b ∼ Gam(hb

1, h
b
2),

where Gam(hb
1, h

b
2) denotes a gamma distribution

with mean hb
1/hb

2 and variance hb
1/(hb

2)
2, with both

hb
1 and hb

2 specified in advance.
Our initial model for the variance parameters

{Vijw : i = 1, . . . , I, j = 1, . . . , J, w ∈ W} is

V −1
ijw = φijw = φ1,wφ2,jφ3,i,

which captures phase, station, and event specific
variation in the precision of the arrival data given
the expected arrival times. The phase-specific scal-
ing parameters {φ1,w} are given a gamma prior dis-
tribution;

φ1,w ∼ Gam(hV
11,w, hV

12,w),

with {hV
11,w, hV

12,w} specified in advance, allowing for
a different prior for each φ1,w. The {φ2,j} and {φ3,i}
are treated slightly different. We assume that

φ2,j ∼ Gam(1 + r2, r2), with

r−1
2 ∼ Gam(hV

21, h
V
22),

(8)
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with hV
21 and hV

22 given. Note that a gamma distri-
bution with shape equal to 1 + r2 and rate r2 has
a mode at 1 for all values of r2. Since r2 is not as-
sumed known a priori, the {φ2,j} are marginally cor-
related as they all provide some information about
the value of r2. This is not the case for the {φ1,w}.
The event-specific precision parameters {φ3,i} are
modeled analogously to the {φ2,j};

φ3,i ∼ Gam(1 + r3, r3), with

r−1
3 ∼ Gam(hV

31, h
V
32).

(9)

In the case when Wijk = 0, that is when aijk

is not assumed to be a valid observation of any of
the N phases considered, aijk is given a broad (non-
informative) distribution. We take,

aijk ∼ Gau(µijk, σ2
0),

where µijk = Aijwijk
(the expected arrival-time

given the observed phase-label) and σ2
0 is a large

variance parameter specified in advance.

The Phase-Assignment Data Model

The phase-assignment model part of (7),
p(w |a,o,T,W,σw), is not only a phase-assignment
model, but rather group-assignment model. This is
because we allow Wijk to assign observations to the
“does not belong to any known phase” category by
putting Wijk = 0. This can be particularly useful
to guard against “outliers” which can arise under a
number of circumstances.

The phase-assignment model is a discrete distri-
bution over the vector of possible phase assignments
that one could expect to see for a given event-station
pair. For example, if the set of possible phase-labels
(indicators) W = {1, 2, 3} and the i-th event results
in two picked arrivals at the j-th station (nij = 2),
the possible configurations for the observed phase-
vector wij = (wij1, wij2) are given by

W2 ≡ {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}.

On the other hand, the possible configurations for
Wij = (Wij1,Wij2) are given by

W+
2 ≡ {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2),

(1, 0), (2, 0), (3, 0), (0, 1), (0, 2), (0, 3), (0, 0)}.

Currently, we assume a very simple phase-
assignment model given by

p(w |a,o,T,W,σw) =
∏
i,j

p(wij |Wij),

where

p(wij |Wij) =

{
ρij if wij = Wij ,

1−ρij

|Wnij
|−1 otherwise,

with ρij ∈ [0, 1], a pre-specified phase-picking accu-
racy probability.

The above model barely scratches the surface of
taking advantage of the observed phase assignments.
However, we expect most of the data information to
be carried in the arrival times. For example, if a Pg
arrival is wrongly labeled as a Lg arrival, we expect
the discrepancy in the observed and the predicted
arrival times to flag that error.

2.2 The Process Model

Recall the process model in (4). As in the case of
the data model, it is natural to factor the process
model as,

p(T,W |F, τ ) = p(W |T, τW )p(T |F, τT ),

where τ = {τW , τT }.

The Phase-Assignment Process Model

The (prior) phase-assignment model p(W |T, τW )
can be taken to be rather simple. Note that this
model simply assigns probabilities to the different
possible phase configurations that each Wij can take
prior to observing any data, but conditional on the
expected travel-times. Without looking at the data
one does not know much about what phases were
observed. We assume a uniform (non-informative)
prior for W,

p(W |T,F, τW ) =
∏
i,j

p(Wij),

where p(Wij) = 1/|W+
nij
| and |W+

nij
| is the number

of different phase configurations Wij can assume.

The Travel-Time Process Model

We assume the following model for the expected
travel-times (conditional on the predicted travel-
times),

Tw(xi, sj) = αw(xi, sj) + βw(xi, sj)Fw(xi, sj),

where αw(·, ·) and βw(·, ·) are stochastic phase-
specific travel-time shift and scaling model-
correction terms, respectively. We currently take

αw(xi, sj) = αw
0 and βw(xi, sj) = βw

0 ,
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where both αw
0 and βw

0 are assigned Gaussian prior
distributions. The additive term αw

0 can be thought
of as correcting for variation in regional crust thick-
ness while βw

0 can be thought as correcting for vari-
ation in travel speed.

Obvious extensions are to allow the two correction
terms to vary with location. For example, assume
that

αw(xi, sj) = αw
0 + αw

1 (xi) + αw
1 (sj),

where αw
1 (·) is given a spatially correlated Gaussian

prior.

2.3 The Prior Knowledge

We take the prior distribution for the origin lo-
cation xi to be multivariate Gaussian where the
event depth is log-transformed (i.e., (xi, yi, log zi)′ ∼
Gaussian). Similarly, the origin-times {oi} are as-
signed independent Gaussian prior distributions. In
most cases we have vague prior information about
the event origin parameters. However, there are
events that have well established origins that we
would like to include in our analysis to provide, in-
directly, information about other parameters of the
model (e.g., travel-time correction parameters).

3. Posterior Inference

Realizations from the joint posterior distribution
(6) are generated using a Markov chain Monte
Carlo (MCMC) algorithm with a mix of Gibbs and
Metropolis transition steps (e.g., Gelman et al.,
2004, p. 292). At each iteration, the parameters are
sampled in the following order:

1. Origin times {oi}, each individually.

2. Origin locations {xi}, each individually.

3. Phase-assignments {Wij}, each individually.

4. Travel-time shift and scaling parameters
{αw

0 , βw
0 }, each individually.

5. Station-specific variations {bj}, each individu-
ally.

6. Precision parameters {φ1,w, φ2,j , φ3,i}, each in-
dividually.

7. Precision variation parameters {r2, r3}, each in-
dividually.

Given the current model, we note that

aijk = oi +αw
0 +βw

0 Fw
ij + bj +εijw, w = Wijk, (10)

where εijw ∼ Gau(0, Vijw). Note that the param-
eters {oi}, {αw

0 }, and {bj} all yield a shift in the
expected arrival time and as such are highly corre-
lated, and therefore difficult to sample efficiently on
an individual basis, as outlined above. To improve
chain mixing, the following two transition kernels
are also applied:

8. Origin times {oi}, travel-time shifts {αw
0 },

and station-specific variations {bj}, all sampled
jointly.

9. Travel-time shift and scaling parameters
{αw

0 , βw
0 }, all sampled jointly.

We now give some more details on how each of
these transition steps are carried out.

3.1 Sampling Origin Times, Travel-Time
Parameters, and Station-Specific Vari-
ations

The origin times {oi}, the travel-time correction pa-
rameters {αw

0 , βw
0 }, and the station-specific variation

parameters {bj} all have a Gaussian prior distribu-
tion. And they all interact with the data through the
additive model (10), with Gaussian errors. Hence,
using standard Gaussian-Gaussian conjugate results
(e.g., Gelman et al., 2004, p. 46), the full conditional
distribution of each of these parameters is Gaussian.
We therefore adopt a Gibbs-update for the individ-
ual transitions needed in transition steps 1, 4, and
5.

In addition to the individual parameters having a
Gaussian full conditional distribution, the joint dis-
tribution of any collection of these parameters has
a multivariate Gaussian distribution (e.g., Gelman
et al., 2004, p. 578). Hence, for transition steps
number 7 and 8, we also adopt Gibbs-updates. How-
ever, as these updates involve multivariate Gaussian
distributions, and hence matrix computations (in-
cluding QR decompositions), they are considerably
more computationally involved than the single pa-
rameter updates. These joint updates are therefore
not carried out in every iteration.

3.2 Sampling Origin Locations

Note that origin location parameters {xi} interact
with the observed data and other model parameters
only through the travel-time model Fw(·, ·), which
is a physics-based simulation computer code. This
does not leave many options available to construct a
transition kernel for the origin locations. We adopt
a Metropolis multivariate Gaussian random-walk to
sample each xi = (xi, yi, zi)′, where zi is the event
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depth log-transformed. Hence, given the r-th real-
ization x(r)

i , a new proposal x∗i is generated from
Gau(x(r)

i ,Σi), where Σi is given. The new proposal
is either accepted or rejected as the (r + 1)-th real-
ization according to the Metropolis acceptance ratio
(e.g., Gelman et al., 2004, p. 289).

3.3 Sampling Phase Assignments

The phase-assignment vector Wij takes possible val-
ues in the finite set W+

nij
. This allows us to tabulate

the full conditional distribution of Wij ,

p(Wij = w |a,w, · · · ), for w ∈ W+
nij

,,

where · · · denotes all the remaining parameters in
the model. The transition step 3 is therefore carried
out using Gibbs-updates.

3.4 Sampling Precision Parameters

Since the errors in (10) are Gaussian and the preci-
sion parameters {φ1,w, φ2,j , φ3,i} have gamma prior
distributions, one can show that (e.g., Gelman et al.,
2004, p. 50)

p(φ |a,w, · · · ) is Gamma,

where φ is any of {φ1,w, φ2,j , φ3,i}. Hence, we use
Gibbs-updates in transition step 6.

3.5 Sampling Precision Variation Parame-
ters

The precision rate parameters r2 and r3, of (8) and
(9), respectively, do not yield full conditional dis-
tributions that are readily available for sampling.
However, these full conditional distributions can be
evaluated up to a constant of proportionality and in
addition can be shown to be unimodal. This makes
it relatively easy to implement a slice-sampler (Neal,
2003) for both r2 and r3. This is the approach we
take in transition step 7.

4. Application: Nevada Nuclear Test-Site
Events

We selected nine nuclear explosion tests from the
Nevada test site (NTS) database (Walter et al.,
2003) along with a (subset) of arrival data from
nine stations recording the seismic activity following
these tests; see Figure 1. The arrival data was lim-
ited to three phases, W = {Pn,Pg,Lg}, yielding a
total of 128 arrival times for the nine events, with the
number of arrivals observed from each event ranging

Figure 1: The location of the nine events (circles)
and the station considered (three letter id).

from 7 (reported by 3 stations) to 23 (reported by 8
stations).

Analysis of this arrival data was carried out un-
der different prior and model assumptions, includ-
ing using corrupted arrival data. We present the
result from one of these analysis, where: (1) infor-
mative prior was assigned to the origin of two of the
events, (2) the arrival data was corrupted, and (3)
the model carried out phase/outlier identification.
This represents a scenario one could expect, where
there are some events that have well established ori-
gin (ground truth events) and the arrival data is po-
tentially corrupted with outliers and misidentified
phases.

The NTS arrival data was corrupted in two ways:
(1) Pn/Pg phase-labels were exchanged in the ar-
rival data for four event-station pairs and (2) 30sec
was added to the recorded arrival-time of the Pg
phase for four event-station pairs. In both cases, ar-
rival data from the same three events were corrupted
(events 591069, 628994, and 576701). The original
number of arrivals for these three events was 7, 12,
and 17, respectively, but after corrupting the data
there are only 4, 9, and 11 “good” arrivals for these
events, respectively.

The travel-time model used was the global IASP91
model, which is known to produce biased travel-
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times for this particular region (Anderson & Myers,
2005).

In sampling from the posterior distribution, 10
MCMC chains were run in parallel, each of length
4,000, with the first 2,000 iterations used for burn-
in and tuning of the Metropolis random-walk event-
location proposal distributions. Of the 2,000 itera-
tions remaining from each chain, every 10th iteration
was stored, yielding a sample of 2,000 iterations (200
samples from each chain).

Figure 2 shows the lat-long posterior distributions
for the nine events. Note that each event is drawn
at a different scale. The events with corrupted data
are the last event in the first row (event 576701) and
the first and last events in the second row (events
591069 and 628994). The true lat-long locations of
the events is well captured by the posterior distribu-
tions, with some of the events within the 50% pos-
terior probability contours and all within the 95%
contours. Including the three events with corrupted
data.

The corrupted data was identified by the model.
This is shown in Table 1 for the four cases where
Pn/Pg phase-labels were switched. In all of these
cases, the highest posterior probability was put on
the correct phase-assignment vector. A similar suc-
cess was seen for the four cases were 30sec was added
to the Pg arrivals.

Analysis of the posterior realizations of the travel-
time correction parameters showed significant vari-
ation among the phases, both in terms of shift pa-
rameters {αw

0 } and scaling parameters {βw
0 }, with

the Lg phase showing the strongest deviation from
the IASP91 travel-time model. The posterior dis-
tributions of the phase-specific precision scaling pa-
rameters {φ1,w} indicated that Pn arrivals had the
greatest influence (greatest precision), followed by
Pg, and then Lg. There was also notable difference
in the station-specific precision parameters {φ2,j}.
But there was less variation among the event-specific
precision parameters {φ3,i}.

These initial results are very promising. With cor-
rupted data, we are both able to construct realistic
posterior distributions for the event lat-long loca-
tions (corrupted and non-corrupted events) and also
identify the corrupted data. The travel-time cor-
rection model is relatively simple and future efforts
aim at a more realistic travel-time correction model
with spatially-varying travel-time corrections. Addi-
tional improvements under investigation are event-
specific precision parameters that vary with travel-
time length, to mirror how event magnitude might
impact the arrival “picking” accuracy.

Event 591069, Station ELK:

O[Lg] O[Pg] O[Pn] Prob CumProb

1 Lg Pn Pg 0.9825 0.9825

2 Lg Pn NA 0.0070 0.9895

3 NA Pn Pg 0.0060 0.9955

4 Lg NA Pg 0.0045 1.0000

Event 628994, Station KNB:

O[Lg] O[Pn] O[Pg] Prob CumProb

1 Lg Pg Pn 0.9645 0.9645

2 NA Pg Pn 0.0175 0.9820

3 Lg NA Pn 0.0110 0.9930

4 Lg Pg NA 0.0070 1.0000

Event 576701, Station BMN:

O[Lg] O[Pg] O[Pn] Prob CumProb

1 Lg Pn Pg 0.9135 0.9135

2 NA Pn Pg 0.0735 0.9870

3 Lg Pn NA 0.0095 0.9965

4 Lg NA Pg 0.0030 0.9995

Event 576701, Station NEL:

O[Lg] O[Pg] O[Pn] Prob CumProb

1 Lg Pn Pg 0.9700 0.9700

2 Lg NA Pg 0.0110 0.9810

3 NA Pn Pg 0.0095 0.9905

4 Lg Pn NA 0.0085 0.9990

5 NA NA Pg 0.0005 0.9995

Table 1: Identifying the four cases where Pn/Pg
phase labels were switched in the corrupted data.
The first line in each table shows the observed
(called) phase labels, with Lg correct, but Pn and Pg
switched. These are then followed with the phase-
label vectors with the highest posterior probability.
The phase label NA denotes an outlier.
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